

What should all engineering technicians know and do? The development of T level core content

Dr Rhys Morgan Director, Engineering and Education Royal Academy of Engineering

- Engineering community review of T level content
- Occupational maps for engineering
- Principles of an engineering and manufacturing T level
- Development of core content

Engineering input

- Academy involved in occupational mapping exercise
- Asked by DfE and Lord Sainsbury (Gatsby Charitable Trust) to convene engineering profession
- Wide stakeholder engagement: 40+ organisations engaged through the process of workshops since July
- Sector skills organisations, professional institutions, employer representatives, FE colleges, national skills academies...

Occupational Routes

Agriculture, environment & animal care

Business and Administration

Catering and Hospitality

Childcare and education

Construction

Creative and Design

Digital

Engineering & manufacturing

Hair and Beauty Health and Science Legal, Finance and Accounting **Protective Services** Sales, Marketing & Procurement Social Care **Transport and Logistics**

Route

Engineering & Manufacturing

180+ occupations:

- Apprenticeship standards
- Standards in development
- Other technician occupations

Route

Pathways

Engineering Design & Development

Engineering & Manufacturing

Manufacturing & Process

Maintenance, installation & repair

Route	Pathways	Specialisms
	Engineering Design & Development	Engineering design and development technician
		Quality and project control technician
	Manufacturing & Process	Fabrication and machining technician
Engineering		Manufacturing technician
& Manufacturin g		Plant operative
		Process operative
		Manufacturing operative
	Maintenance, installation & repair	Installation and service technician
		Manufacturing/ process maintenance technician
		Vehicle technician

ROYAL ACADEMY OF ENGINEERING Specialisms

	Welder (2)
Ephrication 8 Wolding	Engineering technician (3): Maritime fabricator
Operative/Technician	Welder (3)
operative, reentiteran	Engineering construction pipefitter (3)
	Fabrication welder
	Composites Technician
Manufacturing & Process Operative/Technician	Engineering technician (3): Aerospace manufacturing fitter
	Boat builder (3)
	Engineering technician (3): Maritime electrical fitter
	Engineering technician (3): Maritime mechanical fitter
	Engineering technician (3): Maritime pipeworker
	Nuclear operative (2): Nuclear process operative
	Advanced manufacturing fitter
	Heritage engineering technician
	Furniture manufacturer (2): Wood machinist

Principles of E&M T level

- <u>Not a competency</u> qualification should provide a basis for further development towards the competence required in work
- Develop the <u>widely applicable</u> knowledge, skills and behaviours that prepare learners for work in a range of different roles
- Motivate and <u>enable learners to continue their</u> <u>development</u> by way of apprenticeships, further education or higher education
- Enable professional registration at a later date
- Illustrate the diversity, challenge and career potential of E&M.

So what should technicians know and do?

Levels

 There will be no QCF levels for the qualification - Level differentiation will be through specialisms

Content

• The curriculum must only be the content (knowledge, skills, behaviours) required that enables a person to gain employment in that occupation

Maths

 the only maths content will be that which is common across the pathway and the minimum required to do the job

Duration

 960GLH – 700hrs Core and specialism, 260 Basic & additional

The Output Standards identify Learning Objectives within each of the following six key areas of learning:

- A. Science and mathematics
- B. Engineering analysis
- C. Design
- D. Economic, legal, social, ethical and environmental context
- E. Engineering practice
- F. Additional general skills

A. Science and mathematics

Outcome A1

Know and explain the scientific principles underpinning relevant technologies and use the main relevant formulae associated with them

Outcome A2

Know and use relevant mathematics, including numerical and data analysis, to support the application of technical and practical skills

B. Engineering Analysis

Outcome B1 Know and explain the standard tests and measurements relevant to engineering and manufacturing, and their limitations

Outcome B2

Know and explain how results of engineering analysis are used to develop solutions to common and well-defined engineering and manufacturing problems

Outcome B3

Know and explain how solutions are applied to common and well-defined engineering and manufacturing problems using commonly applied methods

C. Design

Outcome C1

Know and explain business, customer, and user needs

Outcome C2

Know and explain the constraints on the design process including environmental and sustainability limitations; ethical, health, safety, security and risk issues; intellectual property; codes of practice and standards

Outcome C3 Know and explain how solutions are designed for well-defined engineering and manufacturing problems

Outcome C4 Know their role in the design process

Outcome C5 Be able to communicate their work to technical and non-technical audiences

D. Economic, social, legal, ethical, environmental context

Outcome D1

Know and explain the need to work professionally and ethically and have a basic knowledge of professional codes of conducts

Outcome D2

Know and explain the commercial, economic and social context of the engineering and manufacturing processes

Outcome D3

Know and explain the need for engineering and manufacturing activities to promote sustainable development

Outcome D4

Know the main legal requirements governing engineering and manufacturing activities, including personnel, health & safety, contracts, intellectual property rights, product safety and liability issues

Outcome D5

Know and explain key risk issues, including health & safety and environmental

E. Engineering Practice

Outcome E1 Demonstrate how to use a range of relevant and commonly used materials, equipment, tools, processes, or products

Outcome E2 Know and explain the procedures and practices for common industry standard operations and processes

Outcome E3 Know how to find information in technical literature and how it is applied

Outcome E4 Identify and know how to use commonly available codes of practice and industry standards

Outcome E5

Identify quality issues and explain the potential for continuous improvement

Outcome E6...

F. Additional general skills

Outcome F1 Demonstrate basic skills in problem solving, communication, information retrieval, working with others and the effective use of general IT facilities

Outcome F2 Explain how to plan self-learning and to improve performance as the foundation for lifelong learning/CPD

Outcome F3 Demonstrate how to plan and carry out a personal programme of work

Outcome F4 Demonstrate how to exercise personal responsibility, as an individual or as a team member

A bit more detail: Outcome statements

A. Science and mathematics

Outcome A1
Know and explain the scientific principles underpinning
relevant technologies and use the main relevant formulae
associated with them

A1.1	Demonstrate the use of SI units	Range of SI units relevant to engineering
A1.6	Solve problems involving work, energy and power	Work done; Energy; Power; Potential and kinetic energy

B. Engineering Analysis

Outcome B1 Know and explain the standard tests and measurements relevant to engineering and manufacturing, and their limitations

B1.2	Undertake electronic	Selection, calibration and use; Virtual test instruments and software
	measurement and testing	

Outcome B2

Know and explain how results of engineering analysis are used to develop solutions to common and well-defined engineering and manufacturing problems

B2.2 Recognise the Ductile and brittle fracture; Fatigue; Heat; Vibration; causes of Corrosion; Components; System; Human failure

C. Design

Outcome C3 Know and explain how solutions are designed for well-defined engineering and manufacturing problems

C3.1	Electronic	Build and test combinational & sequential logic circuits,
	devices and	Operational amplifier-based analogue circuits, Computer-
	circuits	based simulation software packages to construct and test
		the operation of analogue and digital circuits

C3.3	Programmable devices	Applications of programmable devices, system layout of programmable devices, function and interrelationship of components, operational analysis of control systems

- Completion of the independent guidance mid Dec
- Publish early January 2018
- Meet with DfE T level pathway panels Jan / Feb

Thank You

- Rhys.Morgan@raeng.org.uk
- Stylli.Charalampous@raeng.org.uk

One final plug!

